It's clear that 2026 will be the "RL" big year. How AI labs use productive data in real-time (almost) training without comprising user experience , data privacy and evaluate is even a bigger questions. CC is rising from there.
OpenAI's blog () points out that today’s language models hallucinate because training and evaluation reward guessing instead of admitting uncertainty. This raises a natural question: can we reduce hallucination without hurting utility?🤔
On-policy RL with our Binary Retrieval-Augmented Reward (RAR) can improve factuality (40% reduction in hallucination) while preserving model utility (win rate and accuracy) of fully trained, capable LMs like Qwen3-8B.
[1/n]

1,56 B
7
Bu sayfadaki içerik üçüncü taraflarca sağlanmaktadır. Aksi belirtilmediği sürece, atıfta bulunulan makaleler OKX TR tarafından kaleme alınmamıştır ve OKX TR, bu materyaller üzerinde herhangi bir telif hakkı talebinde bulunmaz. İçerik, yalnızca bilgilendirme amaçlı sağlanmıştır ve OKX TR’nin görüşlerini yansıtmaz. Ayrıca, sunulan içerikler herhangi bir konuya ilişkin onay niteliği taşımaz ve yatırım tavsiyesi veya herhangi bir dijital varlığın alınıp satılmasına yönelik davet olarak değerlendirilmemelidir. Özetler ya da diğer bilgileri sağlamak için üretken yapay zekânın kullanıldığı durumlarda, bu tür yapay zekâ tarafından oluşturulan içerik yanlış veya tutarsız olabilir. Daha fazla ayrıntı ve bilgi için lütfen bağlantıda sunulan makaleyi okuyun. OKX TR, üçüncü taraf sitelerde barındırılan içeriklerden sorumlu değildir. Sabit coinler ve NFT’ler dâhil olmak üzere dijital varlıkları tutmak, yüksek derecede risk içerir ve bu tür varlık fiyatlarında büyük ölçüde dalgalanma yaşanabilir. Dijital varlıkları alıp satmanın veya tutmanın sizin için uygun olup olmadığını finansal durumunuz ışığında dikkatlice değerlendirmelisiniz.


